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Abstract
Since e-scooters provide a great solution for the “first and last mile problem”, they are very popular nowadays in road transportation. Unfortunately, they are often scattered in the
streets, since many users leave them in the middle of the walkways. As a futuristic solution, we propose that e-scooters could drive themselves to docking stations or designated
parking areas. In this study, the dynamics of riderless electric scooters is analyzed via a spatial mechanical model. The e-scooter is balanced at zero speed, by applying internal
steering torque to the handlebar. A hierarchical, linear state feedback controller is designed with feedback delay. The linear stability charts of the delayed controller are constructed
with semi-discretization. The effect of the center of gravity position of the handlebar on the linear stability is investigated.

Mechanical model and governing equations
The investigated spatial mechanical model of Fig. 1(a) is based on the Whipple bicycle
model [1]. The multibody system consists of four rigid bodies: the handlebar and fork
assembly, the body (the frame), and the front and rear wheels.
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Figure 1: (a) The spatial model of an e-scooter. (b) The surface corresponding to the constraint
equation for the pitch angle ϑ together with the approximate surface of Eq. (1).

Geometric constraints and generalized coordinates
]Three hinges between the bodies constrain three translational and two rotational DoF

each, leading to 15 scalar constraining equations.
]The front and the rear wheels are attached to the ground leading to two additional

geometric constraints in the system.
]The configuration space is 4 · 6 − 17 = 7 dimensional, i.e., one has to choose seven

generalized coordinates. Let us choose the coordinates X and Y of the center point R
of the rear wheel, the yaw angle ψ, the lean angle φ, the steering angle δ, and the
rotational angles ϕf and ϕr of the front and the rear wheels around their rotational
axes. The vector of generalized coordinates is q =

[
X Y ψ φ δ ϕf ϕr

]T
.

]The pitch angle ϑ can be suppressed as the function of the lean and the steering an-
gles. This provides a quartic equation for sinϑ, which can be solved analytically but
is cumbersome. To simplify the derivation of the linearized equation of motion, one
can use an approximation as

ϑ ≈ e

4p
δ2 sin 2ε− e

p
φδ cos ε , (1)

where e is the trail, p is the wheelbase (the distance between the front and the rear
wheel contact points) and ε is the rake angle, see Fig. 2(b).

Kinematic constraints and pseudo velocities
]We assume that the wheels roll purely on the flat ground. Altogether, four scalar kine-

matic constraining equations can be formulated for the two wheels, one longitudinal
and one lateral for each wheel-to-ground contact.

] Since our goal is to stabilize the motorcycle for zero longitudinal speed, the rotational
speed of the front wheel is also considered to be zero: ϕ̇f = 0.

]The number of pseudo velocities is equal to the difference between the number of the
generalized coordinates and the number of kinematic constraints, i.e., 7 − 5 = 2 in
this study. The vector of pseudo velocities is σ =

[
φ̇ δ̇

]T
.

Equations of motion
]The nonlinear equations of motion can be derived considering the geometric and kine-

matic constraints of the system, e.g., with the help of Kane’s method [2].
]The linearized equations of motion can be written as Mẍ + Kx = Q, where M

is the mass matrix, and K is the stiffness matrix. The vector of state variables is
x =

[
φ δ

]T. The vector of generalized forces is Q =
[
0 M s

]T with internal steering
torque M s.

]The above-described linearized equations of motion agree with the literature [3] for
zero speed.

Hierarchical linear state feedback controller
]We try to balance the e-scooter by using the steering mechanism, i.e., applying steering

torque M s on the handlebar.
]A higher-level controller calculates the desired steering angle as

δdes = −Ks
pφφ(t− τ )−Ks

dφφ̇(t− τ ) , (2)

where τ is the feedback delay of the controller.
]The internal steering torque is created by a lower-level control law as

M s = −Ks
pδ (δ(t)− δdes)−Ks

dδδ̇(t) . (3)

]For different lower-level control gain pairs (Ks
pδ, K

s
dδ), stability charts were constructed

by semi-discretization [4] in the plane of the higher-level control gains and the optimum
points were obtained. Then, a so-called stabilizability plot was constructed, namely,
the real part of the rightmost characteristic exponent Reλmax related to the optimum
point is plotted in the plane of the lower-level control gains Ks

pδ and Ks
dδ, see Fig. 2(a).

The optimal lower-level control gain pair is Ks
pδ = 10Nm and Ks

dδ = −5Nms, see
the black cross.
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Figure 2: (a) Stabilizability plot: the real part of the rightmost characteristic root Reλmax for lower-
level control gain pairs (Ks

pδ, K
s
dδ). (b) The geometric parameters that have a relevant effect on the

linear stability.

Parameters with relevant effects on the linear stability
According to previous research, the feedback delay τ , the rake angle ε, the trail e and
the center of gravity of the handlebar xKH have significant effects on the linear stability
properties, see Fig. 2(b). The more the center of gravity of the handlebar afore the
steering axis is, the greater the linearly stable region is, see the linear stability charts of
Fig. 3(a). However, the vertical position can only be stabilized for xKH < 0.0277m, see
Fig. 3(b). The optimum value for the center of gravity of the handlebar is approximately
xKH

opt = 0.0106m.
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Figure 3: The effect of the center of gravity of the handlebar xKH on the linear stability for fixed
lower-level control gains Ks

pδ = 10Nm and Ks
dδ = −5Nms and fixed geometric parameters [5]. (a)

Linear stability charts obtained by semi-discretization [4], (b) the real part of the rightmost charac-
teristic roots by means of the center of gravity of the handlebar xKH.
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